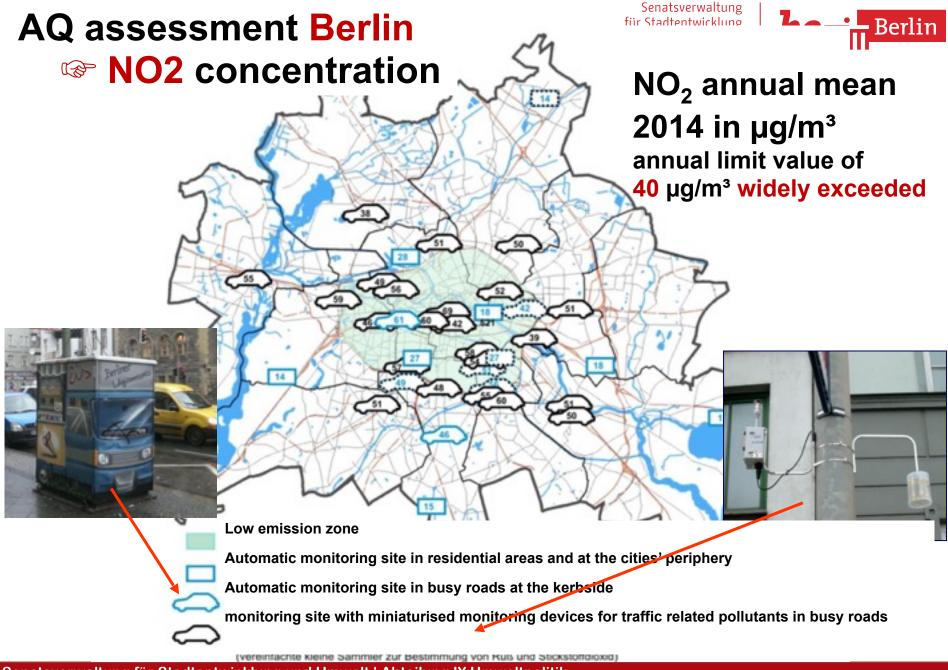
Air Quality in Berlin: emerging challenges and how clean fuels like gas could help

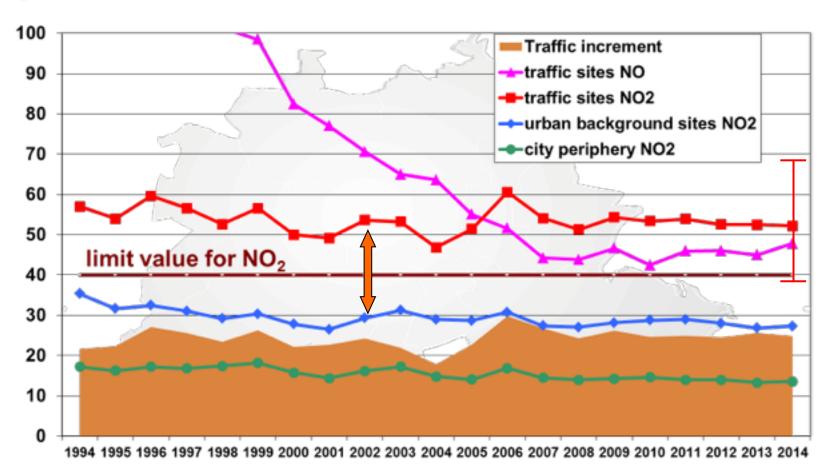
Martin Lutz

Berlin Senate Department for Urban Development and Environment Directorate IX, Environment Policy


- **☒** Current problems with air quality
- Origin and reason
- **☒** Potential vehicle technology solutions
- **Benefits of using gas and existing obstacles**

now a clean city? not quite...

pollutant	main source	status
SO2	power plants, industry, domestic heating	problem solved 20 years ago
CO, Pb, HM	Traffic, heavy industries	e never a problem
Benzene	traffic	e problem solved 10 years ago
PAH	traffic, domestic heating	⇔ still problems at few spots in years with adverse meteorology
Ozone	long-range transport, traffic	diminishing problem, to be solved at national & EU level
PM2.5	long-range transport, traffic	
PM10	long-range transport, traffic	estill problem in years with adverse meteo, but local contribution shrunk
NO ₂	traffic	serious problem, time extension

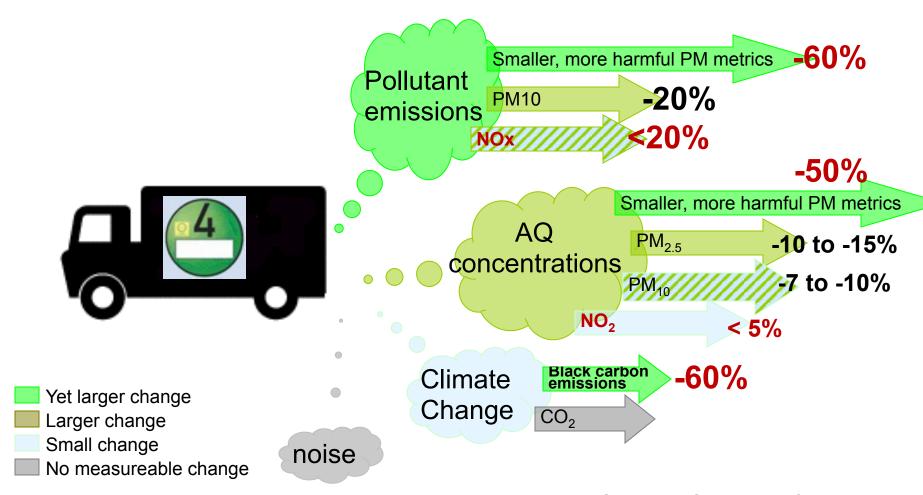


AQ assessment Berlin

™ NO₂ pollution trend

Compliance with NO2

time-frame in Germany

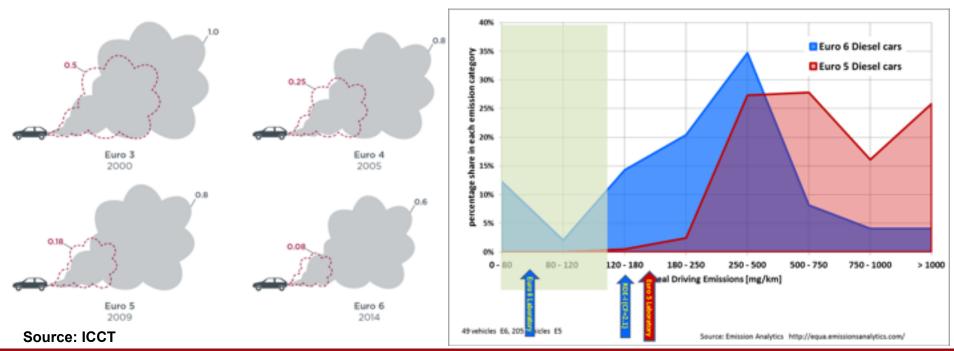

Envisaged time frame notified to the Commission to meet NO2 – limit value with current AQ plans in Germany

Federal State	Expected compliance in non-attainment areas
Baden-Württemberg	2030 In Stuttgart agglomeration, elsewhere 2016-2024
Bavaria	2030 in Munich agglomeration, elsewhere before 2020
Berlin	2020
Hamburg	2020
Hesse	2025 in Darmstadt, Limburg, elsewhere in 2020
Northrhine-	By 2015 for Bielefeld and Münster,
Westphalia	After 2020 for Rhine-Ruhr Area
Rhinland-Palatinate	2018 - 2022
Saxony-Anhalt	By 2020
Thuringia	2016/17 for Gera and Weimar, after 2020 for Mühlhausen

be iii Berlin

LEZ in Berlin & Germany

Source: L. Sadler, modified



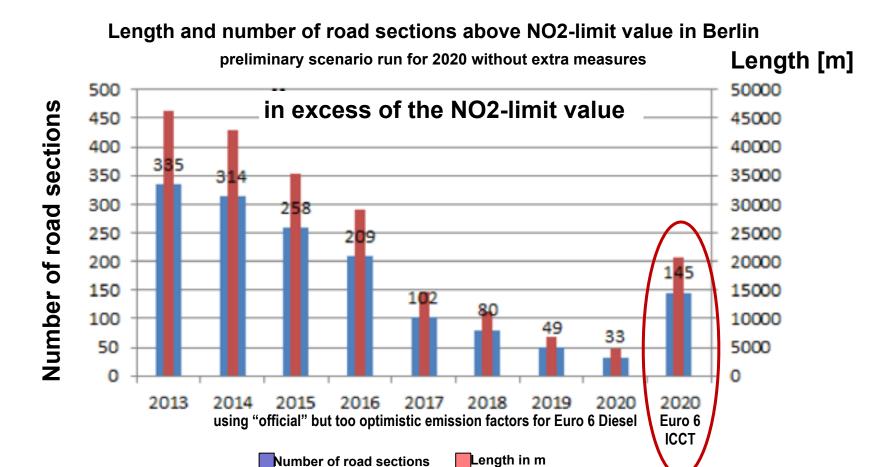
Diesel vehicle performance

NOx emissions

Reason for the meagre LEZ effect and missing downward trend of NO2

- - **♥ More than 50% of cars entering into service are Diesel**
- Rising NO2 emissions by Diesel cars since Euro 4
- Very little improvement in real driving emissions (RDE) since Euro 3
 - Euro 6 not much better

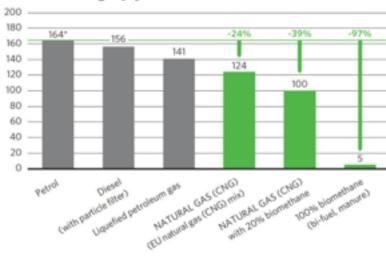
Tackling the NO2 pollution



potential vehicle technology solutions

Diesel vehicles? Certainly not!

Tackling the NO2 pollution


Electric vehicles

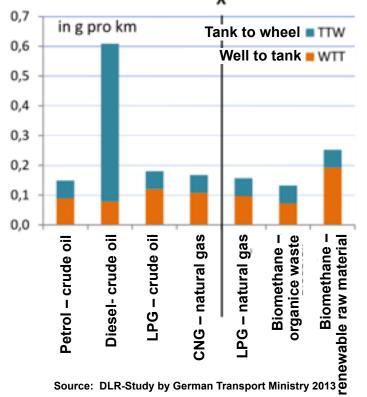
- **Example 2** Zero tailpipe NOx emissions
- K Limited range between charging cycles
- K Battery durability still limited, especially in fast charging mode
- K Batteries & extension of charging infrastructure expensive
- K Not yet economically viable, huge funding needed
- K Sufficient renewable power supply still lacking
- No short/medium-term solution for private car use
- **♦ Poor perspective for heavy goods vehicles**
- Useful for captive fleets with defined daily mileage

■ Petrol and LPG engines

- Less NOx emissions than Diesel
- Some, but limited scope for further NOx-emission reduction
- Limited potential for switching to renewable fue

Greenhouse gas emissions in the overall balance ("well-to-wheel") of different fuels in gCO₂eq/km.

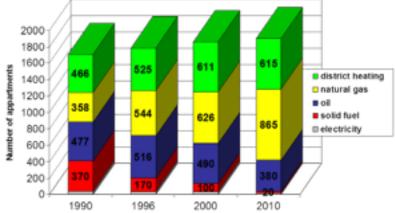
Source: www.erdgas-mobil.de


Tackling the NO2 pollution

- Natural gas engine (CNG, LNG)
 - Low real driving NOx emissions below type approval
 - Engine technology already well developed
 - Fuel efficiency enhanced in recent years
 - K Limited market availability of different vehicle types/marques
 - Similar cost-efficiency as Diesel
 - Decent refilling infrastructure
 - Potential for LNG application in heavy goods vehicles (freight transport)
 - - Biogas from organic waste or renewable raw materials
 - Hydrogen from surplus wind/solar power
 - Power to Gas (methane)
 - CNG/LNG could help curbing NOx emissions from road transport fairly soon

NO_xemissions

Promotion of natural gas as clean fuel


on or natural yas as clean it

Air Quality Plan Berlin

- Increased use of gas as a clean fuel for domestic heating
- municipal vehicle fleet
 - Garbage collection vehicles
 - 60% of whole fleet running on biogas produced from Berlin's organic waste collection system
 - **♥ Public buses**
 - (unfortunately) strategic decision for Diesel 15 years ago
 - Diesel Part. Filter & SCR (de-NOx) retrofit programme as a compensation
- Taxis, goods vehicles & private cars
 - funding scheme for purchase of up to 1000 CNG-vehicles for taxis and driving schools
 - launched already in 2001, but still only 15% CNG taxis
 - ▼ Temporary funding through free gas-vouchers for up 1000 new private CNG cars and 100 new CNG HGVs&LGVs to compensate the higher price of the vehicles
- network of 24 natural gas refilling stations
 - ♦ increasing share of biogas

be Berlin

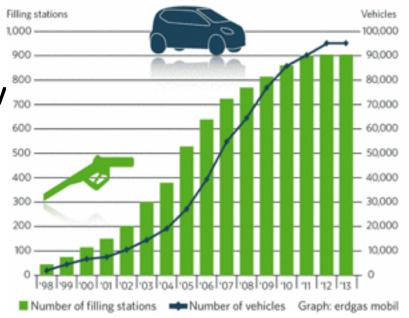
Promotion of natural gas as clean fuel

Germany

Limited success with stagnating CNG – vehicle numbers

□ 100.000 of 45 Mio passenger cars in Germany (0.2%)

despite of...


- Relatively well developed network of refilling stations at least in DE
- Strong economic incentive due to energy tax deduction for gas as fuel for vehicles
- Low price of CNG in relation to Petrol: 50%, Diesel: 60%

Likely reasons are...

- Weak promotion by auto industry, despite of increasing market availability of CNG vehicles
- Relative small number of auto dealers selling CNG vehicles and offering technical services
- Missing clarity on continuation of tax deduction

Use of CNG in Germany

Number of filling stations and vehicles 1998-2013

and Environment

Air quality & natural gas

Conclusions

- Berlin still faces air quality problems, in particular high NO2 – concentrations generated from road transport
- Diesel is the problem, rather than solution, because of costly emission control technology needed
- Natural gas could be a promising and cost-effective solution on the short-term
- Widespread use as a clean fuel for house heating
- Similar scope for road transport
- Strong perspective for use of renewable energy
- Decent framework, but still obstacles for growth
- Funding still needed to be competitive with Diesel
- How to boost CNG/LNG use for road transport?

martin.lutz@senstadt.berlin.de

